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Hopf bifurcation and quasiperiodicy in a simulation model of the leaky faucet
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Simulations with a discrete mapping, obtained from a relaxation oscillator model for the leaky faucet, are
presented. It is shown that Hopf bifurcations and closed-loop attractors similar to those observed in leaky
faucet experiments can be easily reprodu¢€d.063-651X98)01111-§

PACS numbegps): 05.45+b, 02.70--c, 47.52:+j

~ Indripping faucet experiments complex dynamical behavmalized tou=br, b is the coefficient of frictionK is a
ior, including chaos, has been obsery&e-8|. Among other  gpring constant normalized w7, andF represents the flow
things, quasiperiodicity3] and, recently, the occurrence of a ;ate normalized td.

Hopf bifurcation was experimentally detectgd. In a pre- The mechanism allowing for the drop detachment is simu-

vious papef(8], analog simulations were presented of a re-ateq by reducing the mass by an amount
laxation oscillator model, which includes substantial im-

provements over the variable mass oscillator model of Shaw
[1]. These improvements allow for the experimental obser-
vation that the forming drop undergoes a stretching duringwherea is a constantat the critical pointthereX.=1).
the breaking-off and thus emphasize the importance of the A stretching of the forming drop of masé is supposed at
discontinuity introduced at the critical point. The results ofthe threshold, so that, after the falling off of the drop, the
the numerical investigations showed evidence of the capabiresidual restarts with velocity. at the point
ity of this model to reproduce the broad variety of phenom-
ena experimentally observéd,9).
As remarked by Bernhard.0], the nonlinearities that are
essential for aperiodic motion in a chaotic relaxation oscilla-
tor are the discontinuities in the dynamical equations. On thavhere
basis of this observation, a discrete mapping technique was
proposed to represent the dynamics of a leakyf 1djp With
this mapping the whole scenario of dynamical behavior of
the dripping faucet can be reproduced, greatly reducing the
computational time. represents the drop radius aBdthe liquid density normal-
In the present paper it is shown that, among other feaized tou/x?.
tures, the mapping also reproduces the quasiperiodical be- A solution of the set of Eq(1) can be approximated by
haviors seen in the real leaky t4@,7]. The differential the function[11]
equations of the variable mass oscillator mol can be
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put, in a straightforward way, in the following dimensionless X(T)=(AsinQT+B cosQT)e  "™+M/K, (5
form:
where
daXx
TV Q=JK/M. (6)

The mapping is obtained by finding, for each drop, the

dav values ofT that satisfy the equation
M —==—-KX-V+M,

daT
X(T)=1. (7)
dMm _ At fixed values of the parametei§ and o bifurcation
—=F, (1) . _ ; -
daT diagrams are obtained by calculating the time intervig|s

where T is the time normalized tar=(x./g)Y? g is the
gravitational acceleratiorX=x/x. is the displacement nor-
malized to the critical displacemert, M is the mass nor-
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between successive drops as a function of the flowkatey
using Eq.(5) and conditiong2) and(3) [12].

Figure 1 shows a particular region Bfvalues where an
evolution from a periodic to a quasiperiodic behavior is pro-
duced. This transition is characterized by the emerging, from
a period-1 region, of a closed-loop pattern that further
evolves towards a strange attractor. Starting from albout
=0.578 up to the period-7 region, return maps, ; versus
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FIG. 1. A selected region of a bifur-
8 — cation diagram for the relaxation oscil-
lator model for the dripping faucet &
L is varied, ate=8 and K=15. The
spectrum consists of 50 points for each
i F value.
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T, show that a spiral node evolves to a quasiperiodic motion, r'=(F—Fo+1)r+ard,
by opening a limit circle of small radius and giving rise to (8)
limit circles with increasing size as the control paramdter 0'=6+c.

increases; then th&? torus evolves to a period-7 frequency ) ) ) ) )
locking. The power spectra of the corresponding pseudotend=€t US assum@<0. Then, ifF>F,, an invariant circle is
poral series display the appearance of various linear compf€fined. the radius of which is given by
nations of two base frequencies. Thus the pseudotemporal
series undergoes a sequence of transitions very similar to 2 1
those described in the papers quoted in R&ffor the actual o=~—3 (F=Fo), ©)
dripping faucet, an evident difference being that the experi-
mental evolution occurs from a period-5 frequency to awhereF is the critical control parameter. The radiyscan
period-1 motion through a quasiperiodic movement, an inbe chosen as the mean distance of the poififs {,T,) on
verse transition with respect to that shown in Fig. 1, wherehe limit circle from their centerT,T), where
the quasiperiodic movement leads to a period-7 behavior.

In Fig. 2 a closed loop and a chaotic attractor are shown. N
By looking in the region of the map of Fig(l® aroundT, T= l 2 T
~8.7, one can see that the strange attractor develops by Ni=p "
means of successive distortions of the loop, followed by
elongation of corners, which represents a stretching apart ¢ the mean dripping time. From a linear fit, prescribed by
nearby pointg9]. Eq. (9), we obtainF,=0.5790.

The birth of a stable limit cycle pictured in Fig. 1 is a In Fig. 3 a double Hopf bifurcation obtained at=4.4
(secondaryHopf bifurcation and can be model§¢ti3] using and K=37 is shown. Increasin§, after a period doubling

the two-dimensional mapr () —(r’,6'), bifurcation of a period-1 behavior, two spiral nodes form
= (a) 10 - (b)
9 —
O 8 FIG. 2. Return map$,, 1 vs T,,, showing(a)
a closed loop pattern @ =0.5795 and(b) a
85 - strange attractor & =0.5900. For each map'2
points are used.
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FIG. 3. Birth of a double Hopf bi-
furcation from a period-2 behavior. Pa-
rameters values arex=4.4 and K
=37.
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FIG. 4. Return maps dg) F=1.0150 andb)
F=1.0235.

FIG. 5. (@) Chaotic triple closed loop aF

=0.3600,0=5, andK=35. (b) Time series at
F=0.3620; plots of every 33rdl,,, starting from
T, Ty, andT;.
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stable limit cycles as those of Fig(a}; then, proceeding one of the loops and indicates quasiperiodicity. An analogue
across alternate regions of periodic and quasiperiodic paseparation of experimental time series of H&f. into three
terns, the loops increase their sizes, evolve to larger amplpatterns occurs by plotting; s -
tude, and strike and twigat F~1.023 by forming a bow as In conclusion, we have shown that the mapping of a re-
in Fig. 4(b). Increasing again the flow rate, the knot of the laxation oscillator analog to the dripping faucet enables us to
bow unties and the attractor acquires a loop form, whichobtain chaotic attractors very similar to the experimental
afterwards coalesces in points giving rise to period-7 fre-ones, and in particular to simulate Hopf bifurcations and re-
guency locking motion. AfF~1.0305, a sort of loop with produce multiple closed loops. The variety of dynamical be-
complex behavior develops. havior reported in the present and early papgg®,11
Finally, triple closed loops very similar in aspect to the yields good reasons to believe that the model is adequate to
experimental ones reported in Figlb of Ref. [3] are ob-  shed light on the physical mechanism of the dripping faucet
tained ate=5 andK =35 aroundr~0.36. Varying the flow dynamics. It seems clear that the mechanism that permits the
rate, chaotic triple loops as those shown in Fige)5multi-  modeling of the complex leaky tap physics is the swift
periodicity (e.g., atF=0.361Q and regular triple loop¢e.g., change at the threshold. Equatidids, (4), and(5) can pro-
at F=0.3620 are found. The time series diagrams for thisvide some suggestions to improve the model proposed. For
last triple-loop pattern are shown in Figid, whereTgy | example, the dynamics greatly changes if one permits the
(j=1,2,3) versuk are plotted. Each curve corresponds todensityD to vary, since this parameter controls the rebound.
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