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Hopf bifurcation and quasiperiodicy in a simulation model of the leaky faucet
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Simulations with a discrete mapping, obtained from a relaxation oscillator model for the leaky faucet, are
presented. It is shown that Hopf bifurcations and closed-loop attractors similar to those observed in leaky
faucet experiments can be easily reproduced.@S1063-651X~98!01111-8#

PACS number~s!: 05.45.1b, 02.70.2c, 47.52.1j
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In dripping faucet experiments complex dynamical beh
ior, including chaos, has been observed@1–8#. Among other
things, quasiperiodicity@3# and, recently, the occurrence of
Hopf bifurcation was experimentally detected@7#. In a pre-
vious paper@8#, analog simulations were presented of a
laxation oscillator model, which includes substantial im
provements over the variable mass oscillator model of Sh
@1#. These improvements allow for the experimental obs
vation that the forming drop undergoes a stretching dur
the breaking-off and thus emphasize the importance of
discontinuity introduced at the critical point. The results
the numerical investigations showed evidence of the capa
ity of this model to reproduce the broad variety of pheno
ena experimentally observed@8,9#.

As remarked by Bernhard@10#, the nonlinearities that are
essential for aperiodic motion in a chaotic relaxation osci
tor are the discontinuities in the dynamical equations. On
basis of this observation, a discrete mapping technique
proposed to represent the dynamics of a leaky tap@11#. With
this mapping the whole scenario of dynamical behavior
the dripping faucet can be reproduced, greatly reducing
computational time.

In the present paper it is shown that, among other f
tures, the mapping also reproduces the quasiperiodical
haviors seen in the real leaky tap@3,7#. The differential
equations of the variable mass oscillator model@8# can be
put, in a straightforward way, in the following dimensionle
form:

dX

dT
5V,

M
dV

dT
52KX2V1M ,

dM

dT
5F, ~1!

where T is the time normalized tot5(xc /g)1/2, g is the
gravitational acceleration,X5x/xc is the displacement nor
malized to the critical displacementxc , M is the mass nor-
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malized tom5bt, b is the coefficient of friction,K is a
spring constant normalized tob/t, andF represents the flow
rate normalized tob.

The mechanism allowing for the drop detachment is sim
lated by reducing the mass by an amount

DM5aMV ~2!

~wherea is a constant! at the critical point~hereXc51!.
A stretching of the forming drop of massM is supposed at

the threshold, so that, after the falling off of the drop, t
residual restarts with velocityVc at the point

X0512R
DM

M
, ~3!

where

R5S 3DM

4pD D 1/3

~4!

represents the drop radius andD the liquid density normal-
ized tom/xc

3.
A solution of the set of Eq.~1! can be approximated by

the function@11#

X~T!5~A sin VT1B cosVT!e2T/M1M /K, ~5!

where

V5AK/M . ~6!

The mapping is obtained by finding, for each drop, t
values ofT that satisfy the equation

X~T!51. ~7!

At fixed values of the parametersK and a bifurcation
diagrams are obtained by calculating the time intervalsTn
between successive drops as a function of the flow rateF, by
using Eq.~5! and conditions~2! and ~3! @12#.

Figure 1 shows a particular region ofF values where an
evolution from a periodic to a quasiperiodic behavior is p
duced. This transition is characterized by the emerging, fr
a period-1 region, of a closed-loop pattern that furth
evolves towards a strange attractor. Starting from abouF
50.578 up to the period-7 region, return mapsTn11 versus
6847 © 1998 The American Physical Society
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FIG. 1. A selected region of a bifur
cation diagram for the relaxation osci
lator model for the dripping faucet asF
is varied, at a58 and K515. The
spectrum consists of 50 points for eac
F value.
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Tn show that a spiral node evolves to a quasiperiodic mot
by opening a limit circle of small radius and giving rise
limit circles with increasing size as the control parameteF
increases; then theT2 torus evolves to a period-7 frequenc
locking. The power spectra of the corresponding pseudot
poral series display the appearance of various linear com
nations of two base frequencies. Thus the pseudotemp
series undergoes a sequence of transitions very simila
those described in the papers quoted in Ref.@7# for the actual
dripping faucet, an evident difference being that the exp
mental evolution occurs from a period-5 frequency to
period-1 motion through a quasiperiodic movement, an
verse transition with respect to that shown in Fig. 1, wh
the quasiperiodic movement leads to a period-7 behavio

In Fig. 2 a closed loop and a chaotic attractor are sho
By looking in the region of the map of Fig. 2~b! aroundTn
;8.7, one can see that the strange attractor develop
means of successive distortions of the loop, followed
elongation of corners, which represents a stretching apa
nearby points@9#.

The birth of a stable limit cycle pictured in Fig. 1 is
~secondary! Hopf bifurcation and can be modeled@13# using
the two-dimensional map (r ,u)→(r 8,u8),
n,
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r 85~F2F011!r 1ar3,
~8!

u85u1c.

Let us assumea,0. Then, if F.F0 , an invariant circle is
defined, the radius of which is given by

r 0
252

1

a
~F2F0!, ~9!

whereF0 is the critical control parameter. The radiusr 0 can
be chosen as the mean distance of the points (Tn11 ,Tn) on
the limit circle from their center (T̄,T̄), where

T̄5
1

N (
n51

N

Tn

is the mean dripping time. From a linear fit, prescribed
Eq. ~9!, we obtainF050.5790.

In Fig. 3 a double Hopf bifurcation obtained ata54.4
and K537 is shown. IncreasingF, after a period doubling
bifurcation of a period-1 behavior, two spiral nodes for
FIG. 2. Return mapsTn11 vs Tn , showing~a!
a closed loop pattern atF50.5795 and~b! a
strange attractor atF50.5900. For each map 214

points are used.
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FIG. 3. Birth of a double Hopf bi-
furcation from a period-2 behavior. Pa
rameters values area54.4 and K
537.

FIG. 4. Return maps at~a! F51.0150 and~b!
F51.0235.

FIG. 5. ~a! Chaotic triple closed loop atF
50.3600,a55, andK535. ~b! Time series at
F50.3620; plots of every 33rdTn , starting from
T1 , T2 , andT3 .
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stable limit cycles as those of Fig. 4~a!; then, proceeding
across alternate regions of periodic and quasiperiodic
terns, the loops increase their sizes, evolve to larger am
tude, and strike and twist~at F;1.023! by forming a bow as
in Fig. 4~b!. Increasing again the flow rate, the knot of t
bow unties and the attractor acquires a loop form, wh
afterwards coalesces in points giving rise to period-7 f
quency locking motion. AtF;1.0305, a sort of loop with
complex behavior develops.

Finally, triple closed loops very similar in aspect to th
experimental ones reported in Fig. 8~b! of Ref. @3# are ob-
tained ata55 andK535 aroundF;0.36. Varying the flow
rate, chaotic triple loops as those shown in Fig. 5~a!, multi-
periodicity ~e.g., atF50.3610! and regular triple loops~e.g.,
at F50.3620! are found. The time series diagrams for th
last triple-loop pattern are shown in Fig. 5~b!, whereT33k1 j
( j 51,2,3) versusk are plotted. Each curve corresponds
e
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one of the loops and indicates quasiperiodicity. An analog
separation of experimental time series of Ref.@3# into three
patterns occurs by plottingT15k1 j .

In conclusion, we have shown that the mapping of a
laxation oscillator analog to the dripping faucet enables u
obtain chaotic attractors very similar to the experimen
ones, and in particular to simulate Hopf bifurcations and
produce multiple closed loops. The variety of dynamical b
havior reported in the present and early papers@8,9,11#
yields good reasons to believe that the model is adequa
shed light on the physical mechanism of the dripping fau
dynamics. It seems clear that the mechanism that permits
modeling of the complex leaky tap physics is the sw
change at the threshold. Equations~3!, ~4!, and~5! can pro-
vide some suggestions to improve the model proposed.
example, the dynamics greatly changes if one permits
densityD to vary, since this parameter controls the rebou
it

ions
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